

DECISIONS FOR DELAWARE Sea Grant Looksat OiSpills

ROBERT B. BIGGS
Associate Dean for Academic A/fairs
College of Marine Stradies
Associare Professor of Marine Stalics ant Gerhegy
University of Delaware

August 1977

DEL-SG-13-77

Marine Advisory Services - Sea Grant College Program College of Marine Studies - University of Delaware

Newark, Delaware 19711

PRODLCTION CREDITS

I-diting and layoul: Bruce W. Lee
Jesugn. Kathi Jensen
Graplics bois M. Butlet
draphics and abrte wesugn: Lorraine Turner Fypesetime: Pam bonnelly

Foreword

The Decisions for Delaware Sea Grant report series provides legislators and the people they represent with alternatives and factual infomation on marinerelated topics that have been identified by the Sea Grant Advisory Council as high-prority issuts lacing the state and the region. Authors are asked to . . .

- Define the issues clearly and concisely
- Explain the implications of existing information
- Assess the risk of relying on only existing information
- Suggest further research that would reduce the risk
Before publication, each report is reviewed to ensure that it not only contains accurate information. but that it also treats these important issues fairly and understandably.

This scries is one facet of the Sea Grant College Program at the University of Delaware. Managed by the College of Marine Studies, this state-wide program comprises a broad spectrum of research and educational activities dedicated to the protection. use. and wise development of marine resources. The program is a federal, state. and university partnership supported by a grant from the National Oceanic and Atmospheric Administration's Office of Sea Grant: by an appropriation from the Delaware General Assembly: and by the University of Delaware. Program funds this year total almost $\$ 1.4$ million.

William S. Gaither. Director Sea Grant College Program

SEA GRANT ADVISORY COUNCIL

The Sea Grant Advisory Council plays an active and valuable role in program planning, review, and evaluation. Council members are drawn from a broad spectrum of groups and individuals concerned with Delaware's coastal and ocean resources. Membership on the Council changes periodically. The following persons are members of the 1977-78 Sea Gitant Advisory Council:

Hon. Thurman Adams, Jr.	Paul Felton	Hon. John P. McKay
Delaware State Sendior	Water Resources Association of	Delaware State Representative
Bridgeville, Delaware	the Delaware River Basin	Greenville, Delaware
	Philadelphia, Pennsylvania	
O. P. Bergelin, Assoc. Dean		William J. Miller, Director
College of Graduate Studies	Hon. John P. Ferguson	Delaware River and Bay Authority
University of Delaware	Dela ware State Representative Newark, Delaware	New Castle, Delaware
		Robert O'Brien, Director
Delaware Siale Senatar	Hudson E. Gruwell	Kent County Planming Office
Wilmington, Detaware	Dover, Delaware	Dover, Delaware
Hop. Kenneth W. Boulden	David Hugg. III	Pjerte Olney, Director
Delawate State Representative	Office of Management.	Division of Envirommental Control
New (ustle,) kelaware	Budget and Panning Dover, Delaware	Dover, Delaware
Hon. John M. Burris		Theodore S. Reinke, President
Delaware Slatc Representative	Hon. Charles E. Hughes	Crisfield Dehydrating Company
Miflord. Detamate	Dela ware State Senator	Cambridge. Maryland
Loseph T. Conaway	Wibinington, Dela wase	
Sussex County Adminsirator	J. Donald Isaacs	Hon. Richard Sincock Delaware State Representative
Gertgetown, Dejaware	Townsend, Delaware	Wilmington, Delaware
Hen Nancy W. Cook	Hon. Andrew G. Knox	Paul Stewart
Welaware State Senamy	Delaware State Senator	Wilmington. Dela ware
Kenton, Delaware	Centeruille, Delaware	
Harty E Derrickson		Robert Turnell, Esquire
Rehubuth Reach, Delaware	Wimington. Delaware	Georgetown, Delaware
L. Hayes Dickersan. Editor	Charles Lesser, Manager	
Milfurd Chramide	Teithnical Services	
Miiturd, Delaware	Bivision of Fish and Wildife	
	Diver, Delaware	

Contents

Foreword iii
Sca Grant Advisory Council iv
The Decisions We Must Make 1
What Happens to Oil Spilled on Water? 2
Short-Term Effects of an Oil Spill 4
Case Studies-Long-Term Effects of an Oil Spill 8
Prediction-The First Step in Protection 10
What Protection Methods Can We Use? 12
What Should Delaware Protect? 14
Who's In Charge? 22
Achnowledgmemts 24
References 25
者

We piry ducks dring of exposure. their feathers morted wirl tor. H'e lament poisoned fish washed ashore omid an oif sifick. And disquiered, we wonder what unseen destruction on oil spill has caused. Who is tw blame? The electric tighr that allows vout to read this report and the ink used to print it both use petroleum. The rar or boat that akes you to rour foworle fishing spor rums on petrolemm. W'e are all to blame. The rish of an ouil spill is the prire we par. to use perrolewm. But we car reduce the risk wrough a phatr of resource prorection.

To meet the dentand for energy in the Delaware Valley, the seven major refineries along the Delaware River need almost a million bartels of oil each day. Because no cruderoil pipelines feed the Delaware Valley, this need must be met by tankers sailing up and down the Delaware estuary.

By the mid-1960's, tankers had become so large that their drafts exceeded the depth of the navigation channel. A fully loaded tanker entering the Delaware Bay now may have a draft of from 45 feet to 57 feet. These large ships may not proceed up river until their draft is reduced to less than 40 fect by pumping part of their cargo of crude oil into barges or smaller tankers in a process known as lightering. Of the 300 million barrels of crude oil that passed through the Delaware Bay in 1976, about 74 million barrels was lightered.

While this report focuses primarily on a hypothetical spill oceurring at the lightering area in the lower bay, an oif spill could occur anywhere along the ship channel. Fortunately, however, because of the skill of vessel masters, pilots, and lightering personnel, no catastrophic oi] spill has reached Delaware's shores. But perhaps we have been jucky.

The potential environmental consequences of an oid spili in the Delaware

The Decisions We Must Make

Bay are diverse. Policies, procedures, and jurisdictions for the prevention, control, and cleanup of oil spills ave numerous and overlapping. Since spilled oil does not respect state boundary lines, these problems are important to citizens of both New Jersey and Delaware. This report is intended to stimulate thoughtful discussion of the issue and to provide new or overlooked data and perspectives so that you can make your own decisions on this critical matter. Here are the decisions we must make:

- Which resources of the estuary do we want to protect when a spill occurs?
- Who decides which resources to protect and how is the decision reached?
- May we reasonably expect that we can protect what we want to protect?
- How much will the protection cost and who is going to pay for it?
- Who will devise and execute a plan of protection?
- Should we evaluate other ways of eetting crade oil to the refineries?

What Happens to OilSpilled on Water?

Crude of spilled on water is acted upon by a combiration of processes known as weathering, in which its composition and form change over a period of time. Weathering comprises three major processes:

- Evaporation
- Incorpuration
- Dispersion

Each process is dependent on the other, on the initial composition of the crude oil, and on environmental factors such as the temperatures of the ait and sea, the speeds of the wind and currents, and the action of the waves. To illustrate these
processes, we will examine what happens to a hypothetical spilt of 500 tons, or 3,600 barrels, of tight crude oil 12 hours after it occurred.

As soon as crude oil is exposed to the air, its more volatile components begirs to evaporate. After 12 hours, about 63 tons of the crude of in our example has evaporated.

During this same period, about 145 tons of crude oil has become incorporated into the water. Some components of the crude oil are actually dissolved by the water. Additionally, tiny droplets of crude
oil are sticred into the water, oremulsified. by the action of the waves. Other droplets adhere to particles suspended in the water and sink to the botom.

Thus, after 12 hours, the quantity and quality of the crude oif is different from the material that was spilled. About 40 percent of the crude oil has evaporated or has been incorporated into the water. The other 60 percent-mostly tarry materials that will not evaporate nor dis-solve-remains floating as an wil slick. In our example, about 292 tons of the 500 tons spilled remains on the surface of the water.*

[^0]* For the proporions used in these caledlations, see Maurcr and Wang 119731

Spill covers about 4 square miles ajter Iz hours.

The process of dispersion compises many forces that spread the oil slick across the surface of the water. Immediately after a spill the predominant spreading force is gravity. Within 20 minutes after our hypothetical spill, gravity can spread the 500 tons of crude oil to a thickness of about 0.021 inches.

The extent to which the slick will spread further is determined by the proportion of surface-active compounds in the crude oil. At the point where any dissimilar substances meet, called an interface, similar molecules tend to attract each other and thereby form a boundary between the substances. This attraction is called surface tension; it impedes dissimilar molecules from mixing. as in the case of oil and water, and impedes groups of
similar molecules from spreading. Surfaceactive compounds reduce surface tersion. Therefore, crude oil which contains a relatively high proportion of surface-active compounds will spread over the surface of the water more readily than crude oil which contains a relatively low proportion of surface active compounds. The proportion of surface-active compounds in the crude oil also influences the rate of evaporation and incorporation.

The wind and sea influence the extent to which an oil slick spreads, too. and determine its shape and direction of drift. An oil slick moves in a direction determined by both the direction of the wind and the current, at about 1 to 3 per. cent of the speed of the wind.

As weathering proceeds the stick is no longer unitorm and contimaus. Wind. waves, and curfents pile the farty residues into windrows, of pancake-like dumps. which float amid lange pathes al water covered by a thin shem containing most of the surface-active zompounds. Athough the windrows contain 90 persent of the volume of the slick they vecupy only about 10 percent of the atea cowered hy the slick. Afer 12 hours. the romaining 292 tons of spilled crude oil cuvers about 4 square mides.

Particular eifcumstances may significantly modify the distribution of spilled crude oil Foating ice for examea. may force crude oil to move to ateas el open water: oil may also move to the top wf the ice or under the ice.

Short-Term Effects of an Oil Spill

Ant oil spill that comes ashore could immediately affect many natural. commercial. and recreational activities. This section describes the short-ter:n effects of an oil spill and judges the effects in relative qualitative terms of hight. moderate. or severe. The sole caterion for these judgments is the extent of the short-term inhibition of the normal use of an area.

The degree to which an ail spill affects many of the areas diseussed varies with the time of the year. For example. an oil spill reaching a beach reson on the Fourth of July weekend would no doubt drive away many vacationers and the area would suffer a severe conomic loss; but a spill reaching the same resprt in winter would not cause such an econormic loss. We have expanded the judernents on the effects of an wil spill to include seasonal variations.

Unfortunately, though, many of these judgments are difficult to make be. cause we simply din not have sulficient information in many areas. To assess the consequence of any ceent we must first know the conditions before the event occuered Statistics collected over a relatively long petiod est ablish what is known as a boseline. which indirates the nomma! condition of a particular area of interest. A good example of a baseline is the mamal body temperature of 98.6 degres Farenheit: when we tahe our temperature we conepare the reading of the thermonteter with this baselme. However, the base line that exists for a marsh, for example. is tharkedly inadequate and we camot predict accuately the consequences of an od spill on a marsil. Te indicate that mach work needs tor be done in some areas, this sectom also evaluates the quality of the baselime data upon which the effects of an oil spill were qudped. For this purpose we have ased the qualitative terms of powr. fair, and geral.

Let us see, then, how a major bil spill could affect some components of an estuarine system. The illustration shows a hypothetical oil spill coming ashore along a typical estuary such as Delaware Bay. Many activities on the shore have been affected.

Marsh and Creek

The marsh and creek are distinctive envirunments. Estuarine marshes occur in the intertidal region, the area between the highest and lowest tides. Crude oil could cover a wide area as a rising tide pushes

An oil spill couda affect many activites.
the slick higher and higher. The greatest area of the marsh would be covered during spring tides. the lighest of the high tides. which occur roughly every two weeks. (Spring tides oceur thoughout the year and the name has nothing to do with the seasor.) Direct elfects could last for a considerable time if the oil were stranded high on the marsh and refloated and redistributed by each spring tide.

In the summertime, marsh grasses grow profusely. Crude oil spilled on these grasses kills them within 2 to 3 days. Mammals such as muskrats, nesting shore birds, and the many organisms living in the creck could be killed, harmed, of diven out of the area. The tidal creeks serve as spawning areas for commercially important orgathisms and as the habital for juvenile fish during the springtime and summertime. Data are available on the effects of crude on on the aduli stage of a number of commercially important finfish and shellfish from the East Coast The little we know of the toxicity of crude oil on the egg and larval stages of these organisms seems to indicate that they are more sensitive than the adult animals. Marsh grasses seem to recover by the following season, but animals may take considerably longer to recover. Sport rabbing and fishing could be affecred for no other reason than the aesthetic degradation of the marshes. Studies have shown that people judge the quality of the water by visual criteria and a sheen of oil on the water is a frequently mentioned objectionable characteristic. The overall short-term effect of crude ol on the marsh seems to be moderate during the summer, but the haseline data for a marsh are poor.

During the wintertime, activity of some of the marsh organisms is greatly reduced; the grasses and most of the invertebrate animals are dormant. But mammals such as muskrats are still active and waterfowl have migrated to the area. Hunters of waterfowl, because of both aesthetic degradation and poor hunting may not want to use an affected area, and commercial trappers, particularly those of muskrats, would not be able to make a living in the area. As with summertime effects, though, the baseline data upon which these conclusions are reached are poor.

Wildilife Refuge

The wildife refuge the spill touches includes a large area of mash; thus, many

A marsh and creak typial of to wer Detumare.
of the effects experienced by the marsh would also be experienced by the wildlife refuge. In the summertime, the natural population of animals that live in a marsh would be present. The nammals: birds. and water organisms of the marsh would be affected. In addition, recreationalactivities could be affected; witness the number of people who enjoy birdwatching at Bombay Hook during the summer. The relative overall shorterm effects of a summertime spill on a wildlife refuge would be moderate.

During the wintertime, the immediate effect of an oil spill of a wild life refuge could be much more severe. Whether or not the refuge is managed to attract waterfow, such a marshy shoreline refuge free from hunting pressure will invariably serve as a haven for waterfowl. Spilled oil and waterfowl spell disaster. Waterfowl do not recognize the danger of spilled oil and will land in slicks, particularly the thin shems which contain surface-active compounds. Just as they help oil and water to mix, surface-active compounds also break down the substances that waterprool the feathers of waterfowl. Withour a waterproof coating, the birds become wet and die of exposure. Some birds attempt to preen the oil from their feathers, but in the process they ingest some of the oil and are poisoned. Procedures for cleaning birds have become more effective. As late as 1968 , for example, only 5 percent of birds which were cleaned survived: the survival rate today while typically 10 per-cent-can be as high as 50 petcent of those birds which are treated. But mortality of waterfowl contaminated by an oil spill is still very higlt because most of the birds die before they can be cleaned. The information base upon which effects on a refuge can be judged is lair to good.

 for whe trpical amuinut fherosrapher reciuerts fite eptrgh ip
 fair ", hokng sizus ioss the

Marina

During the summertime, when wateroriented activities are intense, a spill could cause considerable direct loss of revenue for a marina. For any time from a few days to a few weeks, watercontact sports would be eliminated and aesthetic values would decrease apprectably. People won't spend moncy for fuel, food, and bait. and may haul their boats out of the water to prevent fouting by the slick, A pleasure boat contacted by a slick may need to be cleaned or even repainted. Further, crude oil trapped in a marina basin could pose a serious short-term fire hazard. Thus,ona relative basis, the effect of a summertime spill on a marima would be severe. During witertime, the effect would be light becouse peesumably fewer boats would be in the marina. (jiven knowiedge of the location of each marina and the number of slips availabic, we conld judge the effects of an oil spill with gered accuracy.

Resort Community

Like the effect of a spill on a marina, the effect of a spill on a rescort com-
munity is highly seasonal. A summertime spill would halt water contact and beach activities and businesses would lose considerable revenue: vacationers could go to other resoct areas. Although the immediate slick would soon disappear and the beach could be cleaned up in a week or so. there could be a serious effect lasting several months from crude oil that had been stranded in the marsh and along tidal crecks. This oil could fout the beach each time a spring tide refloated and redistributed it. Daring the winter season, the effects of oil reaching a recreational area would be much reduced. Sufficient time may be available for cleaning up the beach and for crude oil stranded by the tide to be dissipated. The information for assessing the effects of a spill on a resort community is quite good.

Shipping

Unless the suurce of the spilled coude oil were a ship blocking the navigation channel, commercial shipping in the area would experience unly a smatl inconvenience. Ships may have to slow down to reduce the possibility of wake
damage to clcanup equipment and exercise precautions to prevent fires, but these effects are negligible.

Oysters

We know quite a bit about the effects of spilled oil on oysters. For the nost part, adult oysters can tolerate oil. However. oysters assimilate some of the components of ctude oil dispersed or dissolved in the water, which gives therr an unpleasant taste. A number of studies have shown that oysters can eliminate the contaminants, or depurate, in 10 to 15 days. Alternatively, oysters moved to clean areas can depurate in a relatively short time. But in at least one reported instance, * oysters did not depurate oil even after considerable time.

Oyster larwae are much more sensitive 10 concentrations of crude oil than are adults. If a spill occurred during the summertime. when larvae were in the water, many could be killed outight. Larval distribution in the water is not uniform and it is very difficult to estimate the number of larvae killed or the effect of larval mortality on oystering in an

[^1]
estuary. It is clear, though, that considerable mortality of larvae will occur in the affected area during the summer months.

During the season for commercial oystering, the winter, an oil spill could have a severe effect on the livelihood of oystermen. If the adult oysters assimilate contaminants from the spilled crude, the oyster beds would have to be closed. Furthermore, if some of the crude oil adhered to sediment particles and sank to the bottom, adult oysters could have an unpleasant taste for several months.

Coastal Industries

If a seafood-processing plant does not process seafood from the area affected by the spill, the direct effects of the spill would be light. However, even the threat of tainted seafood may well reduce the desirability of the product in the mind of the consumer. A plant may use water from the estuary for processes such as cooling, but if the water intake is well below the surface of the water or if the process water does not contact the products, the products should not be affected.

Nor would oil along the waterline of boats docked at the plant have serious effects. But crude oil trapped in the plant's boat basin could pose a serious, shortterm fire hazard.

Other industries along the coast extract materials such as bromine, magnesium, and salt from seawater. Some of these operations may have to be halted until the oil incorporated in the water has been dispersed. The information available for assessing the effects of a spill on coastal industrial activities is good.

Natural Values .

Natural values are those components of an ecosystem which are not immediately valuable to man for commercial or recreational purposes. Since these aspects of our environment appear to be of no direct importance to us, these are the aspects about which we know the least. No one, for example, can place an ecological price tag on 100 acres of salt-marsh grass. Can the destruction of this grass reduce the oyster population? We don't know.

On a relative scale, it is fairly easy to measure the effect of a major oil spill on commercially important estuatine organisms. If analysis shows oysters to have a high phenol content, we know that the oyster beds will be closed because the contaminated animals pose a health hazard and we can then estimate the lost income to the oystermen. Similarly, we can estimate the loss of revenue to operators of marinas and beach concessions. But even if we knew the effects of crude oil on estuarine animals and plants which are not commercially or recreationally impor-tant-which we don't-we still could not predict how the loss of these organisms affects the ecological balance of an estuarine system and ultimately those components of the system we see as important to us.

Despite our lack of knowledge, though, it seems reasonable to say that the effects of an oil spill on natural values in the summer will be more severe than in winter if for no reason other than the higher level of biological activity induced by the higher temperatures. But to reiterate, both the baseline data and our ability to predict are poor.

On one good summer weekend, 200,000 people in 50,000 vehicles make a round trip of over 200 miles to reach Delaware's beaches. These vehicles will burn the gasoline from 31,500 barrels of crude oil. Each 200 -squarc foot motel room uses all the energy in one barrel of crude oil for services like hot water, air conditioning and ice making.

CaseStudies-Long-Term Effects of an OilSpill

Abstract

After the surface stick has dissipated or has been cleaned up, there may be longer-term effects of the spill, particulayly on estuatine arganimas. Solue of the 30 percent of the crude oil incorporated into the water mixes with suspended material and sinks to the bottom. When this happens, estuarine asimals living on the bottom can stir this ail-contaminated sediment into the natural matertals: thus stivated toxic materials may he relensed slowly over a long periad. Viriualiy no systematis field work has been done on this subject and it is difficult to make more than a qualitative guess about the rates of sedimentation or the quantity of oil to he found in sediments. This is just one of the many tupics which need to be stadied further.

To illustrate some of the lype of work that has beell done, howrver. we present sume case studies on the elfects of of on matine life. Nome of the existiag Hetature can pouvide conclusive ataswers. thaugh. and much of it affers conflicting opunions.

Golder Gate Spill

On Jatiary 1K, 1071, wo tankers colluted under the Golden Gate Bridge and spilied 840,006 gullons of ship's fuet win who the San franciseo Bay, In the Folfowing days, tidal cuments carried the on to ilezthy wets and beaches. G. I. Chan [\$4771 separted the effects on this spill wh the ergatisms ahong section of beach toe tad haded sunce 195s. In heavily wiled ateas. Chan observed a Espercent deoff if thatine mentrabates. In subrequers -bservenath from 1972 an 1076. Ghan efpots that the sample counts of mertemates had recturned tor, and in some cases surpassed, the levels hefore the spill. Char bisu poted that there have there no linges ingeffecsin any of the speces examined.

General M. C. Meigs Spill

On January 7, 1972, the General M. C. Meigs, an anmanned troopship, went aground on the northwest coast of Washington, rupturing its fuel tanks on the shallow, rocky shore. For at least ten months after the incident, new spills came ashore periodically as the hulk broke up. R. C. Clark et al. (1973) studied the effects of this long-term spill on the coastal environment. They concluded that ". . . population studies comparing numerical abundance in March. 1972, with thore of August, 1973, showed no
significant differences other than those attributable to nommadseasonal variations."

In addition, they also stated that *. . . lack of dramatia change in speciation as numerical abundance of intertidal or riotile animals suggests the oil spill hat few pronounced or long term adverse effects that out method detected. The August, 1974, survey indicated that the area affected by the impact of the ground. ing and oil spillage from the General M. C. Meigs has returned to an apparently nomal slate as determined by out level of investigations."

Thus barke ran aground at Kehoboth Beach during a northeater in lyob, tu the oil she spilled was cleoned up auickly.

Lake Maracaibo, Venezuela

Lake Maracaibo has been producing oil commercially for 60 years. The production available from the lake (actually an estuary) is about 2.5 million barrels per day (about 2.5 times the quantity imported to Delaware Bay). In 1972, about 100,000 to 120,000 barrels was spilled. There are no relevant chemical or biological baseline data from early or preproduction eras with which to compare present-day data. Studies of Lake Maracaibo by W. L. Templeton et al. (1975) conclude that ...

[^2]
Gulf of Mexico Oil Spill

Over a period of three weeks in 1970, an estimated 65,000 barrels of crude oil was discharged from an oil production platform, Chevron Main Pass Block 41, 1ocated 11 miles east of the Mississippi River Delta. Two thousand barrels of chemical dispersants were sprayed on the platform and surrounding water surface. C. D. McAuliffe et al. (1975) assessed the effects of this spill:

It is estimated that between $25-30 \%$ of the oil evaporated during the first 24 hours, $10-20 \%$ was recovered from the water surface, less than 1% dissolved, and less than 1% of the oil was identified in sediments within a 5 mile radius of the platiom. The remaining oil emulsified and dispersed to undetectable levels, biodegraded or photooxidized.

Spilled oil, identified in bottom sediments by gas chromatography, showed rapid weathering after 1 week to 1 month and at the end of i year was reduced to a few percent of the amount after the spill. Spilled oil was not found in the sediment below 1.5 inches.

Over 550 species of benthic organisms were identified in 233 benthic samples. The number of species and number of individuals of benthic organisms showed low values in some samples near the platform. However, seasonal variations, bottom sediment type, and possibly other environmental parameters made it impossible to determine whether these locations had been affected by the spilled oil.

There was no correlation of number of species, number of individuals, or other biological parameters with the hydrocarbon samples from within a 10 -mile radius of the platform. This lack of correlation suggests lack of significant effect of oil on benthic organisms.

Extensive trawl samples showed no alteration in the annual life cycle of commercially important shrimp. Blue crabs were observed throughout the area, and the number of species of fish collected were comparable to a prior survey.

West Falmouth, Massachusetts Spill

A. D. Michael et al. (1975) studied the effects of a small spill of number-2 fuel oil that occurred in September 1969 at Wild Harbor, Massachusetts. Even in the fourth and fifth years after the spill, they found that ". . . the number of benthic species at the offshore stations and the marsh were slightly, but significantly, lower than those found at control stations. Population densities were similar to control areas for the offshore stations but not in the case of the marsh. . . ."

Prediction-
 TheFirstStepin Protection

To assess the cffects of a spill in the Delaware Bay and to take the steps necessary to protect bur shore, we must first prediet where the spill will go. The Massachusetts Insitute of Technology performed astudy for the federal council on

Environmental Quality which exarmined the movement of a hypothetical spill From two sites in the Delaware Bay. One of these sites. the upper-bay site, is located shout 2 nautical miles upstreatn fromithe present lightering area.

As part of this study, MIT developed a computer program, the "Nearshore Spill Tracking Model," which predicts the tandfall the location where an oil spill comes ashore--and the time of landfall of an oil spill occurring at the upperbay site. Using historical data on the speed and direction of tidal currentsand winds in its computations, the model evaluated 200 hypothetical spills occurring at the upperbay site for each quarter of the year. For the purposes of this study a grid of 3 -mile squares was superimposed on the Delaware Bay; the model computed the probability of a spill coming ashore for each grid square along the shore.*

But in addition to the capability of predicting landfalls. we also need the capability of predicting the path of an oil spill over the upen bay because some of the areas we need to protect-oyster beds. for example -are located in the open bay. 'To provide this capability we have extrapolated fiom MIT predictions, which deal only with the shoreline, to intlude the open bay. This extrapolation assumes that on a staight-line trajectory the probability of a spill orignating in the vicinity of the lightering area and traversing the open bay is the same as the probability of a spill coming ashore.

These predictions have reothing to do with the probability of a spill occurting at the lightering atea; they predict only the likelihood of a spill reaching a given grid square if a spill were to occur in the lightering area.

[^3][^4]From January to March, the bay shore of New Jersey has the highest probability of receiving spills. From April to June. the pattern is not so clear. From July to September, landfall prohabilities are highest for the upper bay but very Iow for the lower bay. From October to December, virtually the entire bay shore of Delaware is subject to a 2 -percent to 10 -percent probability of recciving a spill from the lighering area.

Given that a spill occurred in the vicinity of the lightering area, how long would it take to reach shore? Based on the 800 hypotherical spills evaluated by the model. the minimum time to landfall ranged from 10 hours to 50 hours, depending on currents, winds, and distance to shore. The average time to landfall is always greater than 50 hours, with 50 percent of the spills landing within 75 hours, 60 percent withir 100 hours, and 80 percent within 150 hours.

April - June

Prohability of areas in ihe Delaware Bay being affected by an ois spill in the vicinity of the hichtering areu.

October - December

Probability \{percent

Another computer model. developed at the [niversity of Delaware. prediets movement of an oil spitl in the Delawata Bay Given an estimate of the quantits of oil spilled the imrie at witith the spill uncurred. the tempenatures of the water and air, and a forcast of tize speed and ditce. tion of the wind the computer piedits the locatun of the spill ir sas 34.48 , o 72 beours. It takes the eompoiter onju a
 thus, work crews can he dispatitied ra thic focation-or predicted boationior the spill to initiate protection oldastres.

What Protection Methods Can WeUse?

At present, mechanical methods are the least damaging methods of cleaning up oil spills. Such methods involve the use of booms and skimmers or absorbents. Retrieval of spilled oil by booms and skimmers is not effective if the current exceeds 1.7 to 20 knots. if the wave height is greater than 1 to 2 teen, or if the sil is a distillate product. The use of absorbents is also limited. Proper techniques and equipment fas evenly distributing large quantinics of sorbents over wide areas of open water, for properly agitating and moxing the sorbents with the oil nass, for harvesting the oily agglomerate, and for processing on disposing of the recovered wif-absorbent mass are not available.

Sinkug agents such as sand and steatated clatk are another method of cleanup. These materials were used by the lrench in sink targe masses of oil that spilled from Firrel Combm incident in the Hay of Hiscry and have been developed further in iltolland. Although no adverse etfets on hisheries and hentles life were reperted, the lack of koowledge on the precise fatz ot the oil would indicate that furthet experiments ale needed before thas method can be recommended. Sinking may extend the period that the benthic Funta may be alfecled.

The use utdispersants is aftutherantromersial method. Acsording to cowell (layl) and Smith (lGgK), most of the damiser that actided al the Torrev. (anym spill was cuused, not by the use if despersants bid hy their misues. Specifjeally. the usporsants were applied wodifuces to aid ator in had wonte ashere. Honenter. Hegran ill 701 and Cumevari (IGTi) phant uel that sinte the Forrey Consum insident. despersants have been Jeveloped that are fat bess toxice and at prapurly used. puse a minimumb threat th or burden on the mafise embromment.

[^5]This summary has heen taken directly from Nutiotal Academy of Sciences (1975).

The U.S. Coast Guard teploled the boom in the foreground to combin spillege from the mangled sum section of the Corinthos, a 754 -foot liberian ianker whith exploded and hurned for darsafter being rammed by another ship at the Brotish Peroletum dock at Horctas Hosh, Pennilvonia.

Those upposed to the use of dispersants claim that dispersing the oil into the water column renders the oil easier for marine organisms to assimilate. Dewling et al. (1971) point out that the use of dispersants, especially in rivers and estuaries, imposes an add burden on the assimilative capacty of the river or estuarine system to biodcgrade the oil/dispersant mixture.

Straughan (1972) points out that in certain circumstances such as the protection of an endangered species ot birds, the use of low-toxicity dispersants may override all other considerations. Beynon stresses the advantage of using
dispersants on oil spills to prevent the oi from washing ashore and killing intertidal organisms because of its toxicity or by smothering. The application of the dispersant must be while the on slick is still far enough from shore so that the concentration of the oildispersant mixture is quickly diluted below its toxic level. Further, several spilis that used low-toxcity dispersants were subsequently surveyed and showed no apparen biological damage.

Gatellier et al. (1973) reporn that for a number of years in France. dispersants have been used routinely with minimal environmental effect. The adean-
tage of using dispersants is the dilution effect that teduces toxicat and iacilnates biodegradation. Straughare exparsese drubt as to the effectiveness of rams of these dispersant products in the upen sea at inadequate mang vecurs limwerer.
 opment of how-owaty duperatis that do not lequite the wer at frowne energy to eftect dispersil of tha , ill. The dis. persant has a driballe firce in duthe: across the oill water titerfaceund inemer

Because uphame 15 phatiat ion cerning the dee af dispersants. Fowoth under freld conditions is meeded te estathdish the cotidinions and wirumptanes under which dispersems an he usod effectively

WhatShould Delaware Protect?

 anple. live in the vean but move up the
estuary well into liresh water to spawn during the early spring. Their eggs hatch in fresh water and the hatchlings move slowly through the estuary, frequently taking the entire summer to reach the acean. The hatchlings spend 3 or 4 years at sea maturing, then most of them return to spawn in the stream in which they were hatched. Fish which spend their adult lives in the ocean and return to fresh water to spawn are said to be anadromous.

Fish like the adult striped bass and white perch nove from the lower, saltier portions of the estuary to, or almost to, fresh water to spawn. Eggs and the larvae that hatch frons them drift downstream and the growing juveniles use the estuary as a nursery area. The addts-especially the white perch may spend all or most of their life in the estuary. Fish which spawn in or very close to fresh water and spend most of their adult lives in the estuary are called semianadromess.

April - June

The croaker follows yet another migration and spawning cycle: it spawns in coastal maine waters and its larvae are carried by currents into the estuary, where they grow rapidly. Juveniles migrate back to the open ocean. The adulus, the basis of an important sport and commercial fishery in the past, move imo the estuary during the summes to feed on the rich supply of food.
F. C. Daiber and R. Smith (1972) at the University of Delaware have assessed the distribution of fish-spawning and nursery areas of the Delaware Bay. Their data have been plotted on the same grid system used to predict the probability of a spill coming ashore. From Jambary to March. yellow perch, winter flounder and the little skate each use portions of a broad area of the bay. Frome April to June, spawning and nursery activities ant at their peak over a broad range of the estuary. Lip to seventeen species of fisł are active. Some of the more well known of these fish are the sea crout, whit: perch. spot, winter flounder and blue back herring. These same spe cies occur iz great abundance fron July to Septernber but their distribution is conemtrated in the upper part of the estuary. Fron October to December, as the water cools most spawning activity ceases and larva and juvenites begin oo leave lie estuary.

Number of Species

July - September

October - December

Number of Species anmg the Deicuare Bat as spuyngenat
mursery areas abota from Duibarand Smy it?:

Habitats of Sport and Commercial Fish

As would be expected, the density of sport and commercial finfish in the Delaware Bay is highest in the summer and lowest in the winter, although high densities of fish in the winter are found in the vicinity of the anchorage and farther up the bay near Bombay Hook. The illustrations show the number of fish per 0.1 nautical mile plotted on the grid system for summer (April to September) and for winter (October to March); both illustrations include year-round residents.

These data are taken from Daiber and Smith (1972), who summarized 5 years of data on bottom-dwelling fish collected by an otter trawl in the Delaware Bay. They found that 28 species of sport and commercial fish account for 60 percent of the total fish caught during the survey period. These fish are listed in the table. Since the otter trawl catches mostly bottom-d welling fish, species such as shad and bluefish which do not live on the bottom are probably underestimated; furthermore, species such as the white perch which live in the shallow water inshore were not sampled adequately. And finally, some areas of the bay simply were not sampled.

Trawl-Caught Sport and Cormmercially /mportant Finfish In Delaware	
Specie	Percentage of Total Annual Catch
Summer	
Weakfish	32.29
Scup	11.83
Spot	4.85
Butterfish	1.81
Puffer	1.69
Black Drum	1.39
Summer Flounder	0.47
Northern Kingfish	0.32
Atlantic Menhaden	0.05
Hickory Shad	<0.05
Black Seabass	<0.05
Bluefish	<0.05
Blue Runner	<0.05
Atlantic Croaker	<0.05
Harvestfish	<0.05
Striped Mullet	<0.05
American Shad	<0.05
Winter	
White Perch	- 1.08
Atlantic Herring	0.92
Striped Bass	0.10
Blueback Herring	<0.05
Yatr-Round	
Spotted Hake	1.45
Tautog	1.03
Squirrel Hake	0.80
Silver Hake	0.75
White Flounder	0.41
Alewife	0.12
Atiantic Sturgeon	<0.05

Distribution of sport and commercial finfish in Delaware Bay.
(Data from Daiber and Smith, 1972.)

Scientists aboard the Linivirsity of Dela ware＇s rescarch vesse／Wolvenine examine samples of marine life caught in the De laware Ba． as purt of a rimh－pophation sixul．

Commerciar Fishing in Detaware							
Yedt	Fisherman \｛nurnberl	Catith					
		Fintist：		Orster；		Crith	
		Wembt ［punds）	Value ［dえ九ilara］	Weight （nounds：	Value （dalars）	Weight tice unds？	Value ［callairs．
1954	＋，189	979．000	127，000	4．740，000	2．125，0LU	2.912 .0001	75.3000
1955	1.371	2，84才，0001	243.000	3.290 .000	1，603．0000	2.748000	24C．000
1956	1.257	1．521，000	111.000	1，893，3i0	782.000	3．680．010	424.000
1957	1.434	1，8\％）0no	126．000	4，196，500	2.226 .060	4.922 .000	41.000
1358	1，384	877.000	96，400	\％ 210.000	1，717．000	2.455 .000	186．000
1959	894	577000	61，000	295.000	138.000	1．650．070	125．006
1960	779	204 ，060	26.000	176．090	119.000	2.109 .000	235．000
1961	781	465000	65.000	37，000	18000	613000	67.000
1962	742	510.0080	58.000	81，0［4］	60.000	1，910．000	120，000
1963	662	520，000	65，006	40.000	25.000	522.000	34.0000
1964	631	502，000	60，0100	44.000	27．000	313，000	33.0000
1965	520	589，000	59，000	34．005	24，000	557.000	47.000
1966	449	409.000	molomo	45，600	36,000	571.000	44.100
1967	445	215.000	30，000	61,000	40.069	788，000	34.000
1968	433	161，000	24．000	43,000	41.000	223.000	40.1000
1969	462	1.153 .000	289.000	50.000	37.000	－62．060	57，000
1970	623	810，040	141，000	216.000	130.400	804.000	10G．00\％
1971	524	432．000	\＄2．000	313.000	194.000	1.523 .000	2056000
1972	66.7	300.010	59.000	505.1000	409.000	2.500 .000	664.000
1973	541	143，000	20.000	381，000	326.000	2.357 .000	664.300

Right．Important conmerial shellfishing areas in Detoware Bay．

Commercial Fishing

The commercial tishing industry in Delaware Bay experienced a dramatic decline in both catch and value in the 1960 s．Available data for the early 19705 indicate a modest recovery in oyster hat－ vest．an excellent recovery on the crab fishery，but a persistent low yicld in the finfishing．

We have not heen able to uncover data on the specific areas which are fished commercially，nor on the intensity of fishing or the harvest from specifie areas． The generatized dist ributicun of oyster beds in the bay as well as the Delaware blue． crab fishery are shown in the tigure．
Oyster fishery or seeci bed

Recreational Activities

Rising farnily income, increased leisure time, and greater mobility have increased people's desires and abilities to participate in outdoor recreational activities. Along the shores of the Delaware estuary, hunting, pienicking, birdwatching, nature walks, swimming, fishing, and crabbing take place at public and private natural and recreational areas which occupy over 72,000 acres of conservation holdings within the states of Delaware and New lersey. Fishing accounts for most of the recreational use of the open waters of Delaware Bay.

A good indication of the extent of recreational fishing in the slate of Delaware is the number of launchings of small
private boats. At state-owned ramps alone in 1973, almost 80,000 small boats were launched. Of these launchings, only 55 percent were by residents of Delaware: the other 45 percent were by visitors from Pennsylvania, New Jersey, Maryland, and Virginia. Most of the launchings by nonresidents occur in coastal Sussex County.

Over 400 rental stips for private boats are available within the state and Delaware also offers the angler chatter boats and head boats with a total of nearly 900 seats. If we include the number of boats operating from commercial facilities within Delaware and the number of boats operating out of New Jersey, we can safely say that hundreds of thousands of fisherman use the Delaware Bay each year.

Small-Boat Launchings, Avallable Slips, Anct Headboat Capaciries in Delaware			
	Small-Boat Launchings at State Ramps \{number')	Available Slıs ${ }^{*}$ (number)	Head and Charter Boal. Seats \| mumbert
Woodiand Begch	721	0	0
Por 1 Mahen	4,909	0	0
Bowers	27.906	0	329
Cedar Creeth	37.792	235	203
Lewnes	12,440	170	341
	78.268	405	8 B 3
-Oate Incom Mariin, 1973. for 1973. **fatalran Williant. 1976.			

A 'hrdu boat' returns to port
ofter a succesxful day of fishing on Delaware Bar.

While we would want to protect from oil spills the shore facilities which serve recreationalist and fisherman, certain areas of the bay itself may deserve special considenation. From a survey conducted by Sinith (1975), we have plotted the frequency of use of particularly good tishing areas within the Bay. Although no activity is shown for October through December in the illustration, some lishing occurs in October and even into November.

Utilization (percent)

Use of Delaware Bay by party boats onginating in Delaware. (Data from Smith. 1975.)

Three birds prowt the marshland in search of a tarty morsel.

Birds

Birds using the Delaware estuary include ducks and geese, shorehirds, gulls. terns, and marsh and water birds. We don't have good data on the bay-wide distribution of water birds other than water fowl. However, excellent data are available on the kinds and numbers of water birds at both Bombay and Primehook seluges: the data, presented in the table, may provide some insight into the seasonal distribution of water birds over the entire bay.

The fllustration shows an estimate of the abundance of waterfowl along the Delaware shore of the bay. We're contident that this estimate of the distribution can be improved by adding data from the New Jersey and Delaware cooperative migratory biro census and banding programs.

Seasonal distribution of watertow along the Deldware Baw (Data from Goodmont 1975 .)

January - March

Natural Values

Natural values of the Delaware Bay include rays, searobins, myriad small clams, worms, and minnows, the microscopic plants and animals, and the marsh itself. Again, though, we cannot quantify the relationship between these natural values and recreational or commercial resources. But simce we do not know the consequences, if would be prudent not to sacrifice too readily any of these values.

We feel certain that our wetlands are vital. Wetlands surrounding the estuary were mapped as defined in the Delaware River Estuarine Marsh Survey. The illustration shows the percentage of each shoreline block of the grid system which consists of wetlands.

Bottom-dwelling, or benthic, organisms constitute an important part of the natural values of the bay. Maurer and Watling (1976) at the University of Deta-
wate have studied the distribution of benthic urgatisms in the bay; from this work. we can plot the average number of benthic organisms per square meter during the summer, as shown in the illustration. Presumably, the winter distribution of benthic organisms is similar to the summer distribution. It is important to recognize that the total population of benthic organisms is subjecr to wide variations andlike the distrihution of fishifish-is subject to short tem changes.

Fishing boats tied up at Fleming s Landing adong the Smpra River,
'Photograph courtery of Dela ware Nature Fducation Soctety, 1976 .,

Critical Natural Areas and Natural Vistas

In a 1976 study authorized by the Delawate State Planning Office and tunded by the U.S. Otitice of Coastal Zone Manage ment, the Delaware Nature Education Society (1976) identifiederiticalnaturalareas and natural wistas within Kent and Sussex Countics. For many reasons, these areas deserve special protection. According to the study, "a natural area contains some featuress) of unique or typical natural
occurrence in its situation, type of plant life, animal-plant community, or geological, archaeological, aesthetic features, or combinations thereof." Based on field study and evaluation by a research team, the study ranked the importance of these areas on an ascending scale from 3 to 5 . The table shows those natural areas which are located along or near the shore of the Delaware Bay. Two-thirds of these areas ate assigned the highest priority.

As an "enticing addition." the study also presents a subjective sampling of matural visias: "Words fail to adequately convey the refreshing sensation which may be experienced by the viewer.... It is strongly fecommended that the appropriate private organizations and guvemmental agencies take the neversary steps to enable the general public to sutely enjoy the vistas. . . " Those visras which are located along or near the bay shore afe also shown in the table.

Crifical natural areas and natiral wisras along Dela ware Bar in hent and Suspry counties Datu from Deloware Nature Fitucation Swieq, $19^{7} 6$.

feotures red mapis or fred asp

Who's in Charge?

A major aspect of the problem al protectirg Delaware's shoreline from an oil spill is to determine who will decide what to protect and how the decision will be implemented. Frequently, authorities and responsibilities of varions state. Tegional, and federal agencies uverlap.

Federal Government

The United States Coast Guard. under the provisions of the Water Pollution Contol Act of 1972 (PL 92.500), is the primary authority in all aspects of waterbotne oil uansport. Its responsibilities include surveying the estuary to locate oil spills, assessing the mapnitude of spills. and supervising and coordinating deanup activities. The Coast Guard can enlist the services of of the federal agencies and request the conperation of state governments in cleanup activities, and it may also contract the services of privale cleanup organizations. The Coast Guard maintains its own limited cheanup facilities, but its jurisdiction is so extensive that it is often more teasible to have local contractors do the work.

Also by authority of the Water Pollution Control Act of 1972 , the Coast Guard has issued a series of repulations to reduce the probability of accidental discharge of oil duting a vessel's normal operations, including the transfer of cargo to a lighter or to a shoce facility. Under these regulations. the Captain of the Port in our case. Philadelplia-may prohibit the transfer of oil whenever he feels that the conditions of a facility violate the regulations and further operations would threaten lle enviroment. These regulations include gencial rutes concerning facilities and equipment such as hoses, loading anms, and corsure devices used in the transfer of oil. Each operator of a facility engaged in the transfer of oil on
navigable waters must submit to the Coast Guard an operations manual that deseribes the procedures used to meet the Const Guand requlations. Persomel involved in transfer operations are tested and licensed by the Coast Guard and before a facility can receive crude oil from a vessel, a declaration of the facility's having been inspected must be submitted to the Coast Guard.

The Corps of Engineers and Environmental Protection Agency are directed to cooperate with the Coast Guard in the control of oil and other hazardous substances as potential pollutants. In the event of a spill, both agencies can provide personnel, equipnoent, and technical expertise The Buteau of Customs of the Department of the Tressury has wide athority over foreign vessels entering US. ports and is responsible for reporting dangerous conditions to the Coast Guard. The Occupational Health and Salety Administration of the Department of Labor regulates the salety of personnel engaged in lightering operations. The Federal Disaster Assistance Administration of the Department of Housing and Urban Development can assist if a major spill affects a wide area and it the governors of the affected states request the assistance. The Federal Maritime Commission is responsible for obtaining financialresponsibility statements from any vessel wer 300 tons operating in U.S. waters. These certificates of responsibility cover charges of cleanap in the event of a spill.

Interstate Agencies

The Delawate River Basin Commission is an administrative agency, formed under the Delaware Rjver Basin Compact, and consisting of representatives from Delaware. New Jersey, Pennsylvania, New York and tile tederal government.

The conmission is responsible for developing plans, policies, and projects relating to the water resources of the hasin. The commission does not controllightering or crude-oil unkodisg, but does check antipollution devices and serves as a communications center in the cyent of a spill.

The Delaware River and Bay Authority is a bistate agency created in 1961 by the action of both New Jersey and Delaware. Most of the early activities of the autharity focused on traisportation crossings of the bay (Delaware Memorial Bridge and Cape May-lewes Ferry), Within the last several years, the Authority has attempted to establish itself as an implementer and regulator of crude-oil movement and transfer in the bay.

State Governments

The federal Water Pollution Control Act specifically calls upon the state govermments to cooperate in developing antipollution programs. The states have concurrent jurisdiction in maintaining water quality, subject, of course, to the doctrine of national supremacy.

The state of Delaware has long had statutes aimed at preventing pollution of its air and water with particulat emphasis on soil conservation, and preservation of wildife and shellish. In 1973 the legislature amended the enviromental control laws making the Department of Natural Resources and Environmental Control (DNREC) the primary agency in the state for oil-spill cleanup and pollution prevention. To this end, the DNREC has established regulations covering, among other subjects, the bulk transfer of any hazardous material, including crude oil. Any facility used for purposes of transferring 20,000 galions or more per day
of such material is subject to these regulations. The regulations apply to vessels using the river and bay, and if the vessels discharge oil into the waterways they are subject to prosecution by the state before the superior courts. The DNREC, under contract with the Delaware River Basin Commission, samples the water quality of the estuary. All oil spills in the estuary must be reported to the DNREC, but some confusion exists between the department and the Coast Guard on responsibility for minor cleanups. DNREC has assumed the task in the waters off the Delaware shoreline. Spills of 10,000 gallons or more become the object of coordinated efforts on the part of federal and state authorities working usually with private cleanup organizations.

The State of New Jersey, whose shoreline has been seriously ravaged by oil spills, has also attempted to deal with pollution through surveillance of crudeoil shipment on the estuary. The New Jersey Water Quality Improvement Act of 1971 established the Department of Environmental Protection. The department has promoted several programs aimed at the elimination of pollutants from the state's waterways, including the Delaware River and Bay. One of these programs deals with oil and hazardous gas. The superintendent of this program has weekly contact with the Coast Guard in Philadelphia.

Cooperatives

Some areas have set up non-profit corporations, or cooperatives, to work with federal, state and local government
agencies in the event of an oil spill. These corporations usually have industry and agency representation on the board of directors and are established to provide a reasonable capability to contain and harvest oil spills. The operating budget is usually shared by government and industry.

A Question of Responsibility

The passage of legislation and delineation of authority may not be sufficient to ensure the protection of the Delaware Bay. Indeed, the overlapping responsibilities of the various agencies involved may result in tasks undone. The licensing of the lightering area seems to indicate at least one task undone.

Sometime before 1965, the Coast Guard established an anchorage in the Delaware Bay off Big Stone Beach; tankers whose drafts are too great for the river channel northward must be partially unloaded. The Coast Guard is responsible to monitor the lightering operations. No vessels with drafts greater than 39 feet are permitted beyond the Big Stone Beach area and no lightering is permitted except at this anchorage. Sometime between July 1974 and June 1975, the anchorage area was expanded by 40 percent and the amount of crude oil lightered has steadily increased.

The Interstate Oil Transport Company (now IOT Corporation) conducts most of the lightering and their operational record is admirable. Their on-site personnel exercise extreme caution in the lightering task and suspend operations when conditions become marginal. No

$\begin{array}{c}\text { Crude Oil Lightered } \\ \text { at Big Stone Beach } \\ \text { Anchorage Area }\end{array}$				
Year	Oil Lightered			
(barrels)		$]$	1968	$11,100,000$
:---:	:---:			
1969	$12,600,000$			
1970	$10,000,000$			
1971	$12,300,000$			
1972	$24,000,000$			
1973	$41,000,000$			
1974	$56,000,000$			
1975	$65,000,000$			
1976	$74,000,000$			
1977	$80,000,000^{*}$			
Source: IOT Corp.				
*Projected				

significant oil spill has resulted from the lightering activity.

The point, though, is that the National Environmental Policy Act of 1969 (42 USC 4321) states that each federal agency which conducts or licenses any project with the potential of affecting the environment must prepare an environ-mental-impact statement concerning the effects of the project on the environment. The lightering area, designated by the Corps of Engineers or the Coast Guard, was expanded after the passage of the National Environmental Policy, but apparently no environmental-impact statement was prepared.

References

Beynon, L. R. 1970. Oil spill dispersants. In Proceedings: Sympositum on oil spill prevention. London: Institute of Petroleum.

Canevari, E. P.

1971 Oil spill dispersants-Curreat status and future outiook. In Proceedings of joint conference on prevention and control of oil spills, pp. 263-270. Washington: American Petroleum lnstitute.
1973 Development of next generation chemical dispersants. In Proceedings of joint conference on prevention and control of oil spills, pp. 231-240. Washington: American Petroleum Institute.
Chan, G. L. 1977. The five year recruitment of marine life after the 1971 San Francisco oil spill. In Proceedings: 1977 oil spill conference, pp. 543-550. Washington: American Petroleum Institute.
Clark, R. C., Ir.; Finley, J. S.; Patten, B. G.; Stefani, D. F.; and DeNike, E. E. 1973. Interagency investigations of a persistent oil spill on the Washington coast. In Procedings of joint conference on prevention and control of oil spills. pp. 793-808. Washington: American Petroleum Institute.
Cowell, E. B. 1971 . Some effects of oil pollution in Milford Hanen, United Kingdon, In Proceedings of joint conference on prevention and contril of oil spills, pp. 231 240. Washington: American Petroleum Institute.

Cronin, L. E., and Mansueti, A. J. 1971. The biology of the estuary. In A symposium on the biological significance of estuaries, pp. 14-39. Washington: Sport Fishing Institute.
Daiber, F. C., and Smith, R. 1972. An Analysis of fish popudation in the Deloware Bay area. Newark, De.: College of Marine Studies, University of Delaware. 1971-72 annual Dingell-Johnson report to the State of Delaware, Division of Fish and Wildife, Department of Natural Resources and Envirommental Control. Project F-13-R.14.
Delaware Nature Education Society. 1976. Critical natural areas: Kent and Sussex Counties. Greenville, De.: Delaware Nature Education Society.
Dewling, R. T.: Dorter, J.S.; and Pence, G. D., Jr. 1971. Dispersant use vs water quality. in Proccedings of juint conference on prevention and control of oil spills, pp. 271. 277. Washington: American Petroleum Institute.

Dolan, P. 1975. The management of crude oil transfer in the Delaware estuary. In Research on the effects of crude oil transfer and upstream refineries on Delaware Bay. pp. 741. Newark, De.: College of Marine Studies, University of Delawate.
Gatellier, C. R.: Oudin, J. L.; Fusey, P.; Lacaze, J. C.; and Priou, M. L. 1973. Experimental ecosystems to measure fate of oil spills dispersed by surface active products. In Proceedings of joint conference on prevention and control of oil spills, pp. 497. 504. Washington: American Petroleuminstitute.
 ware Bay Report Series, vol. $\begin{gathered}\text {. Newark, De. } \therefore \text { College of Marine Stutes, linter- }\end{gathered}$ sity of Delaware.

 mental Quality.
 assemblages in lower Delaware Bow. Newark, De. College of Marme Studes. U1mersity of Dela wart. (AS-RANN-3-76.

McAuliffe, C. D.: Smalley, A. E.; Groover, R. D.; Welsh, W. M.: Pickle, W. J.; and Jones, G. E. 1975. Chevron main pass block 4t oil spill chemical amd hinhoriat memes. gations. Iu froceedings of goine conference on prewetrion ond contruin wif smilk, Pp. 555.566. Washington: American Petroleum Institute.

Michael, A. D.; Van Ralte. C. R.i and Brown. L. S. 1475. Lamg ferm diticts al an ald spill at West Falmouth. Massachusetts. In Procecdings of hime comiternce :infres vention and controt of oil spills, pp. 573-582. Washinpon: Ambusan Petraboum Institute.
National Academy of Sciences.] 97S. Petroleum in the marine emprmment therkymp in inputs, Jates, and effects. Washingen: Natjonal Acadeny at Sciones.
Smith, J. E. 1968, Tortar Canvon pollution and marine Vife. Lotdon Canbribge [:mversity Press.

Smith, R. W. 1975. Sport fishing in westem Delauare Bor: assesment wititial artas. Newark, De. College of Marine Studits, University of Delaware. CMS.RANM-7. 7 .

Stewart, R. E.; Devanney, J. W.; and Briggs. W. 1974. Oil spill maject memoly for the
 Developments. Cambridere, Ma.: Massachusents Enstitute of Tecfmokey. MIT-5C-74-20.

Straughan, D. 1972 Etclots callsing envirormental thanges alter an will spill. .f. Per. Tech. (March) 250.254.

Templeton, W. L.; Sutton, E. A.; Bean, R. M.; Amett, R. C.; Blaylock. J. W. : and Wildung, R. E. 1975. Pollution studies on Lake Maracaibo, Venczuela. In Proectings a jomf conferernce on prevention and control of oil spills. pp. $489-446$. Washatighti: Anerican Petroleum Institute.

Walton, T. E., and Patrick, R. 1973. Debware River estuarine morsh surwe The Delaware Estuary System: Environmental Impacts and Socio-Ecomomic ETicts. Pholadelphia: Academy of Natural Sciences.
Willams, R. F. 1976. A guide to Delaware's coastine. Newark. De. Sci Criatit Mante Advisory Service, College of Marjne Sudies. Unversity of Delaware Somes af 4 pamphlets.

Acknowledgments

Dr. Frank Daiber
College of Marine Studies
University of Delaware
Harry E. Destickson
Rehoboth Beach, Delaware
\section*{Lorraine M. Fleming}
Delaware Nature Edaiation Socety
Greenville. Deldware
Joed M. Goodman
Frederic R. Harris, Ine
Great Neck, New York
\section*{Jr. Roy Hann}
Department of Civil Lagineering
Texas A\&M Universaty
\section*{Adrian Hooper}
JOT Curpuration
Mhiladelphia. Pennsy/vania
David Hugg, III
Office of Management, Budget and Platring
Duver, Delaware

Paul A. Jensen
College of Marinc Studies
University of Delaware
Dr. Leon Kazmierczak
Sun Oil Company
Philadelphia. Pennsylvania

Ralph Keel
U.S. Fish and Wildife Service

Bombay Hook National Wildlife Refuge

Bob MacPherson
Delaware State Planning Office
Dover, Delaware
Albert S. Matlack
Delaware Society of Natural History
Hockessin, Delaware
Dr. Dotald Maurer
College of Marine Studies
University of Delaware
William J. Miller, Director
Delaware River and Bay Authority
New Castle, Delaware

Dr. Alvin Morris
U.S. Environmental Protection Agency
Philadelphia, Pennsylvania
Pierre Olney, Director
Division of linvirommental Control
Dover, Delaware
Dr. Hsiang Wang
Department of Civil Engineering
University of Delaware
Norman Wilder
Delaware Nature Education Society
Greenville, Delaware
Ralph Williams
College of Marine Studies
University of Delaware
Capt. K. G. Wiman
Captain of the Port of Philadelphia
L'S. Coast Guard
Philadelphia, Pennsylvania

It is the nolicy at the University of Delaware that no person shatl be subjucted to discrimination on the grounds of race, color, religion. sex, mational or ethnic origin, age, handicapped or veteran status.

RECEl"ED
National sea grint depository DATE: AUG $3 \cup 1977$
DEL-SG-1 3-77

=tit $2 \cdots$?

Univensity of Delaware Marine Advisory Services are sponsored by the NOAA Office of Sea Grant, U.S. Department of Commerce.

[^0]:

[^1]:

[^2]: There is no question that significant discharges of oil and oil compounds incidental to the production of petroleum in the Lake Maracaibo Basin have occurred over the last 4 decades in addition to that material from natural seeps. However, the data obtained during the course of this program from both laboratory and field studies would indicate that present operations have not caused discernible damage. The rapid loss, in a few hours, of light hydrocarbons from surface films of oil to the atmosphere has been shown to reduce the toxicity to organisms significantly. The low concentrations of oil measured in lake water have not contributed to a detectable buildup of hydrocarbons in the muscle tissue ofselected commercialspecies. The occurrence of bituminous residues in the sediments, particularly in the production ateas, would suggest that the natural processes of volatilization, biodegradation, and sedimentation are the major mechanisms for removing weathered oil from the biologically productive zone. Examination of the limited fisheries data available does not suggest that the resources are being depleted. Consideration of the potential impact of nonpetroleum wastes, both domestic and industrial, indicates that nonpetroleum materials are contributing to the degradation of the water quality which, consequently, may reduce the biological resources of the lake.

[^3]: Dr. Hsiant wong of the University wi Defoware operates computer terminat that displaps the location of a
 Drpothefical oil spitl buted on preticions from a prugram Dr. Hiane and his collesgucs dereloped.

[^4]: * For a technical discussion of the model, its issumptions and intinlinetions, see Stewart et il. 11974).

[^5]: Wen of the U.S. Coast Guard's National Strike Fores scoop up otl-lalen Ahrortenti-., a powatery chemical which swells upon contact with watir and absirbs spilled chac bil.
 Whestegraph courtesy wf LiS. Cemsi Guara.

